Nuprl Lemma : rpolydiv-property

[n:ℕ+]. ∀[a:ℕ1 ⟶ ℝ]. ∀[z,x:ℝ].
  ((Σi≤n. a_i x^i) (((x z) i≤1. rpolydiv(n;a;z)_i x^i)) i≤n. a_i z^i)))


Proof




Definitions occuring in Statement :  rpolydiv: rpolydiv(n;a;z) rpolynomial: i≤n. a_i x^i) rsub: y req: y rmul: b radd: b real: int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True sq_stable: SqStable(P) squash: T int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  lelt: i ≤ j < k less_than: a < b rpolynomial: i≤n. a_i x^i) so_lambda: λ2x.t[x] so_apply: x[s] req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rpolydiv: rpolydiv(n;a;z) eq_int: (i =z j) pointwise-req: x[k] y[k] for k ∈ [n,m] top: Top ge: i ≥ 

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[z,x:\mBbbR{}].
    ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  (((x  -  z)  *  (\mSigma{}i\mleq{}n  -  1.  rpolydiv(n;a;z)\_i  *  x\^{}i))  +  (\mSigma{}i\mleq{}n.  a\_i  *  z\^{}i)))



Date html generated: 2020_05_20-AM-11_12_19
Last ObjectModification: 2020_01_02-PM-01_23_04

Theory : reals


Home Index