Nuprl Lemma : rpolynomial_functionality

[n:ℕ]. ∀[a,b:ℕ1 ⟶ ℝ]. ∀[x,y:ℝ].
  ((Σi≤n. a_i x^i) i≤n. b_i y^i)) supposing ((x y) and a[k] b[k] for k ∈ [0,n])


Proof




Definitions occuring in Statement :  pointwise-req: x[k] y[k] for k ∈ [n,m] rpolynomial: i≤n. a_i x^i) req: y real: int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rpolynomial: i≤n. a_i x^i) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x,y:\mBbbR{}].
    ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  (\mSigma{}i\mleq{}n.  b\_i  *  y\^{}i))  supposing  ((x  =  y)  and  a[k]  =  b[k]  for  k  \mmember{}  [0,n])



Date html generated: 2020_05_20-AM-11_11_05
Last ObjectModification: 2020_01_06-PM-00_25_48

Theory : reals


Home Index