Nuprl Lemma : rroot-odd-2-regular

i:{2...}. ∀x:ℝ.  2-regular-seq(rroot-odd(i;x))


Proof




Definitions occuring in Statement :  rroot-odd: rroot-odd(i;x) real: regular-int-seq: k-regular-seq(f) int_upper: {i...} all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  has-value: (a)↓ sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B nat: rroot-odd: rroot-odd(i;x) rroot-abs: rroot-abs(i;x) regular-int-seq: k-regular-seq(f) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True squash: T sq_stable: SqStable(P) false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) int_upper: {i...} nat_plus: + uall: [x:A]. B[x] real: implies:  Q member: t ∈ T all: x:A. B[x] ge: i ≥  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 less_than: a < b subtract: m cand: c∧ B rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    2-regular-seq(rroot-odd(i;x))



Date html generated: 2020_05_20-PM-00_30_38
Last ObjectModification: 2020_03_20-AM-11_01_25

Theory : reals


Home Index