Nuprl Lemma : rsqrt-is-one
∀[x:ℝ]. uiff((r0 ≤ x) ∧ (rsqrt(x) = r1);x = r1)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x), 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
nat: ℕ, 
squash: ↓T, 
true: True, 
guard: {T}, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[x:\mBbbR{}].  uiff((r0  \mleq{}  x)  \mwedge{}  (rsqrt(x)  =  r1);x  =  r1)
 Date html generated: 
2020_05_20-PM-00_32_08
 Last ObjectModification: 
2019_12_14-PM-03_08_05
Theory : reals
Home
Index