Nuprl Lemma : rsqrt_wf

[x:{x:ℝr0 ≤ x} ]. (rsqrt(x) ∈ {r:ℝ(r0 ≤ r) ∧ ((r r) x)} )


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsqrt: rsqrt(x) int_upper: {i...} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False subtype_rel: A ⊆B

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x)  \mmember{}  \{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  ((r  *  r)  =  x)\}  )



Date html generated: 2020_05_20-PM-00_31_44
Last ObjectModification: 2019_12_14-PM-03_09_09

Theory : reals


Home Index