Nuprl Lemma : rsum-telescopes
∀[n:ℤ]. ∀[m:{n...}]. ∀[x,y:{n..m + 1-} ⟶ ℝ].
Σ{x[k] - y[k] | n≤k≤m} = (x[m] - y[n]) supposing ∀i:{n..m-}. (y[i + 1] = x[i])
Proof
Definitions occuring in Statement :
rsum: Σ{x[k] | n≤k≤m}
,
rsub: x - y
,
req: x = y
,
real: ℝ
,
int_upper: {i...}
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
int_upper: {i...}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
less_than: a < b
,
squash: ↓T
,
nat: ℕ
,
ge: i ≥ j
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
nequal: a ≠ b ∈ T
,
rev_uimplies: rev_uimplies(P;Q)
,
req_int_terms: t1 ≡ t2
,
subtract: n - m
Latex:
\mforall{}[n:\mBbbZ{}]. \mforall{}[m:\{n...\}]. \mforall{}[x,y:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}].
\mSigma{}\{x[k] - y[k] | n\mleq{}k\mleq{}m\} = (x[m] - y[n]) supposing \mforall{}i:\{n..m\msupminus{}\}. (y[i + 1] = x[i])
Date html generated:
2020_05_20-AM-11_10_52
Last ObjectModification:
2020_02_07-PM-01_44_35
Theory : reals
Home
Index