Nuprl Lemma : rsum-telescopes

[n:ℤ]. ∀[m:{n...}]. ∀[x,y:{n..m 1-} ⟶ ℝ].
  Σ{x[k] y[k] n≤k≤m} (x[m] y[n]) supposing ∀i:{n..m-}. (y[i 1] x[i])


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rsub: y req: y real: int_upper: {i...} int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: less_than: a < b squash: T nat: ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 subtract: m

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[m:\{n...\}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    \mSigma{}\{x[k]  -  y[k]  |  n\mleq{}k\mleq{}m\}  =  (x[m]  -  y[n])  supposing  \mforall{}i:\{n..m\msupminus{}\}.  (y[i  +  1]  =  x[i])



Date html generated: 2020_05_20-AM-11_10_52
Last ObjectModification: 2020_02_07-PM-01_44_35

Theory : reals


Home Index