Nuprl Lemma : rsum_product

[a,b,c,d:ℤ]. ∀[x:{a..b 1-} ⟶ ℝ]. ∀[y:{c..d 1-} ⟶ ℝ].
  ((Σ{x[i] a≤i≤b} * Σ{y[j] c≤j≤d}) = Σ{x[i] y[j] c≤j≤d} a≤i≤b})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y rmul: b real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: less_than: a < b squash: T

Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].  \mforall{}[x:\{a..b  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y:\{c..d  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{x[i]  |  a\mleq{}i\mleq{}b\}  *  \mSigma{}\{y[j]  |  c\mleq{}j\mleq{}d\})  =  \mSigma{}\{\mSigma{}\{x[i]  *  y[j]  |  c\mleq{}j\mleq{}d\}  |  a\mleq{}i\mleq{}b\})



Date html generated: 2020_05_20-AM-11_11_47
Last ObjectModification: 2020_01_02-PM-02_11_55

Theory : reals


Home Index