Nuprl Lemma : rsum_unroll

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].
  {x[k] n≤k≤m} if m <then r0 if (m =z n) then x[n] else Σ{x[k] n≤k≤1} x[m] fi )


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y radd: b int-to-real: r(n) real: int_seg: {i..j-} ifthenelse: if then else fi  lt_int: i <j eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsum: Σ{x[k] n≤k≤m} so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prop: nequal: a ≠ b ∈  has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a) top: Top from-upto: [n, m) subtype_rel: A ⊆B istype: istype(T) rev_uimplies: rev_uimplies(P;Q) squash: T true: True req_int_terms: t1 ≡ t2

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  =  if  m  <z  n  then  r0  if  (m  =\msubz{}  n)  then  x[n]  else  \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m  -  1\}  +  x[m]  fi  )



Date html generated: 2020_05_20-AM-11_10_37
Last ObjectModification: 2019_12_14-PM-00_55_13

Theory : reals


Home Index