Nuprl Lemma : rv-be-inner-trans
∀a,b,c,d:ℝ^2.  (a_b_d ⇒ b_c_d ⇒ a_b_c)
Proof
Definitions occuring in Statement : 
rv-be: a_b_c, 
real-vec: ℝ^n, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rv-be: a_b_c, 
or: P ∨ Q, 
stable: Stable{P}, 
uimplies: b supposing a, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
rv-between: a-b-c
Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.    (a\_b\_d  {}\mRightarrow{}  b\_c\_d  {}\mRightarrow{}  a\_b\_c)
 Date html generated: 
2020_05_20-PM-00_55_50
 Last ObjectModification: 
2020_01_06-PM-00_07_49
Theory : reals
Home
Index