Nuprl Lemma : rv-inner-Pasch3

n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a ≠ p
   b ≠ c
   rv-T(n;a;p;c)
   rv-T(n;b;q;c)
   (∃x:ℝ^n
       (rv-T(n;a;x;q)
       ∧ rv-T(n;b;x;p)
       ∧ (a ≠  x ≠ a)
       ∧ ((a ≠ q ∧ p ≠ c ∧ b ≠ q)  x ≠ q)
       ∧ ((b ≠ p ∧ b ≠ q)  x ≠ b)
       ∧ ((b ≠ p ∧ q ≠ c)  x ≠ p))))


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: not: ¬A rv-T: rv-T(n;a;b;c) and: P ∧ Q false: False or: P ∨ Q rv-between: a-b-c real-vec-be: real-vec-be(n;a;b;c) exists: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) real-vec-sep: a ≠ b iff: ⇐⇒ Q real-vec-between: a-b-c cand: c∧ B rev_implies:  Q rge: x ≥ y guard: {T} rless: x < y sq_exists: x:A [B[x]] nat_plus: + nat: ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) req_int_terms: t1 ≡ t2 rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B i-member: r ∈ I rcoint: [l, u) rccint: [l, u]

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a  \mneq{}  p
    {}\mRightarrow{}  b  \mneq{}  c
    {}\mRightarrow{}  rv-T(n;a;p;c)
    {}\mRightarrow{}  rv-T(n;b;q;c)
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n
              (rv-T(n;a;x;q)
              \mwedge{}  rv-T(n;b;x;p)
              \mwedge{}  (a  \mneq{}  q  {}\mRightarrow{}  x  \mneq{}  a)
              \mwedge{}  ((a  \mneq{}  q  \mwedge{}  p  \mneq{}  c  \mwedge{}  b  \mneq{}  q)  {}\mRightarrow{}  x  \mneq{}  q)
              \mwedge{}  ((b  \mneq{}  p  \mwedge{}  b  \mneq{}  q)  {}\mRightarrow{}  x  \mneq{}  b)
              \mwedge{}  ((b  \mneq{}  p  \mwedge{}  q  \mneq{}  c)  {}\mRightarrow{}  x  \mneq{}  p))))



Date html generated: 2020_05_20-PM-00_52_15
Last ObjectModification: 2020_01_06-PM-00_44_03

Theory : reals


Home Index