Nuprl Lemma : rv-line-circle

n:ℕ. ∀a,b,p,q:ℝ^n.
  (p ≠ q
   (∀x:{x:ℝ^n| ap=ax ∧ (a ≠ x ∧ x ≠ b ∧ a-x-b)))} . ∀y:{y:ℝ^n| aq=ay ∧ (a ≠ b ∧ b ≠ y ∧ a-b-y)))} .
        ∃u:{u:ℝ^n| ab=au ∧ (q ≠ u ∧ u ≠ p ∧ q-u-p)))} 
         ∃v:{v:ℝ^n| ab=av ∧ (q ≠ p ∧ p ≠ v ∧ q-p-v)))} (a-x-b  (q-p-v ∧ (a-b-y  q-u-p)))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q and: P ∧ Q uall: [x:A]. B[x] prop: not: ¬A false: False subtype_rel: A ⊆B sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q rv-congruent: ab=cd squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a req_int_terms: t1 ≡ t2 exists: x:A. B[x] cand: c∧ B sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] so_apply: x[s] rv-between: a-b-c real-vec-sep: a ≠ b

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,p,q:\mBbbR{}\^{}n.
    (p  \mneq{}  q
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}\^{}n|  ap=ax  \mwedge{}  (\mneg{}(a  \mneq{}  x  \mwedge{}  x  \mneq{}  b  \mwedge{}  (\mneg{}a-x-b)))\}  .  \mforall{}y:\{y:\mBbbR{}\^{}n| 
                                                                                                                          aq=ay  \mwedge{}  (\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  y  \mwedge{}  (\mneg{}a-b-y)))\}  \000C.
                \mexists{}u:\{u:\mBbbR{}\^{}n|  ab=au  \mwedge{}  (\mneg{}(q  \mneq{}  u  \mwedge{}  u  \mneq{}  p  \mwedge{}  (\mneg{}q-u-p)))\} 
                  \mexists{}v:\{v:\mBbbR{}\^{}n|  ab=av  \mwedge{}  (\mneg{}(q  \mneq{}  p  \mwedge{}  p  \mneq{}  v  \mwedge{}  (\mneg{}q-p-v)))\}  .  (a-x-b  {}\mRightarrow{}  (q-p-v  \mwedge{}  (a-b-y  {}\mRightarrow{}  q-u-p)))))



Date html generated: 2020_05_20-PM-00_55_20
Last ObjectModification: 2020_03_19-PM-02_21_46

Theory : reals


Home Index