Nuprl Lemma : scale-metric-converges

[X:Type]. ∀[d:metric(X)].  ∀c:{c:ℝr0 < c} . ∀x:ℕ ⟶ X. ∀y:X.  (lim n→∞.x ⇐⇒ lim n→∞.x y)


Proof




Definitions occuring in Statement :  mconverges-to: lim n→∞.x[n] y scale-metric: c*d metric: metric(X) rless: x < y int-to-real: r(n) real: nat: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} false: False iff: ⇐⇒ Q mconverges-to: lim n→∞.x[n] y subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: metric: metric(X) rev_implies:  Q top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  rless: x < y nat_plus: + rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) rneq: x ≠ y mdist: mdist(d;x;y) scale-metric: c*d sq_exists: x:A [B[x]] rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y nequal: a ≠ b ∈ 

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.  \mforall{}y:X.    (lim  n\mrightarrow{}\minfty{}.x  n  =  y  \mLeftarrow{}{}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x  n  =  y)



Date html generated: 2020_05_20-AM-11_57_34
Last ObjectModification: 2020_01_06-PM-00_22_20

Theory : reals


Home Index