Nuprl Lemma : series-sum-0
Σi.r0 = r0
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
series-sum: Σn.x[n] = a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
Latex:
\mSigma{}i.r0  =  r0
Date html generated:
2020_05_20-AM-11_19_42
Last ObjectModification:
2020_01_02-PM-02_10_43
Theory : reals
Home
Index