Nuprl Lemma : series-sum-0
Σi.r0 = r0
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
series-sum: Σn.x[n] = a, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
so_apply: x[s], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}
Latex:
\mSigma{}i.r0  =  r0
Date html generated:
2020_05_20-AM-11_19_42
Last ObjectModification:
2020_01_02-PM-02_10_43
Theory : reals
Home
Index