Nuprl Lemma : square-is-zero

x:ℝ((x x) r0 ⇐⇒ r0)


Proof




Definitions occuring in Statement :  req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q guard: {T} uimplies: supposing a nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False uiff: uiff(P;Q) squash: T nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True subtype_rel: A ⊆B rneq: x ≠ y rless: x < y sq_exists: x:A [B[x]] less_than: a < b

Latex:
\mforall{}x:\mBbbR{}.  ((x  *  x)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  =  r0)



Date html generated: 2020_05_20-AM-11_08_10
Last ObjectModification: 2019_12_14-PM-00_56_01

Theory : reals


Home Index