Nuprl Lemma : square-is-zero
∀x:ℝ. ((x * x) = r0 
⇐⇒ x = r0)
Proof
Definitions occuring in Statement : 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rneq: x ≠ y
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
less_than: a < b
Latex:
\mforall{}x:\mBbbR{}.  ((x  *  x)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  =  r0)
Date html generated:
2020_05_20-AM-11_08_10
Last ObjectModification:
2019_12_14-PM-00_56_01
Theory : reals
Home
Index