Nuprl Definition : strong-regular-upto

strong-regular-upto(a;b;n;f) ==
  bdd-all(n;i.bdd-all(n;j.a |((i 1) (f (j 1))) (j 1) (f (i 1))| ≤((i 1) 1)))



Definitions occuring in Statement :  bdd-all: bdd-all(n;i.P[i]) le_int: i ≤j absval: |i| apply: a multiply: m subtract: m add: m natural_number: $n
Definitions occuring in definition :  natural_number: $n add: m multiply: m apply: a subtract: m absval: |i| le_int: i ≤j bdd-all: bdd-all(n;i.P[i])
FDL editor aliases :  strong-regular-upto

Latex:
strong-regular-upto(a;b;n;f)  ==
    bdd-all(n;i.bdd-all(n;j.a  *  |((i  +  1)  *  (f  (j  +  1)))  -  (j  +  1)  *  (f  (i  +  1))|  \mleq{}z  b
    *  ((i  +  1)  +  j  +  1)))



Date html generated: 2017_10_03-AM-08_42_47
Last ObjectModification: 2017_09_20-PM-05_11_29

Theory : reals


Home Index