Nuprl Lemma : subinterval-subtype

[I,J:Interval].  {x:ℝx ∈ I}  ⊆{x:ℝx ∈ J}  supposing I ⊆ 


Proof




Definitions occuring in Statement :  subinterval: I ⊆  i-member: r ∈ I interval: Interval real: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  subinterval: I ⊆  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop:

Latex:
\mforall{}[I,J:Interval].    \{x:\mBbbR{}|  x  \mmember{}  I\}    \msubseteq{}r  \{x:\mBbbR{}|  x  \mmember{}  J\}    supposing  I  \msubseteq{}  J 



Date html generated: 2020_05_20-AM-11_35_01
Last ObjectModification: 2020_01_08-AM-00_37_25

Theory : reals


Home Index