Nuprl Lemma : summary of definitions
k-regular-seq(f) == ∀n,m:ℕ+. (|(m * (f n)) - n * (f m)| ≤ ((2 * k) * (n + m)))
bdd-diff(f;g) == ∃B:ℕ. ∀n:ℕ+. (|(f n) - g n| ≤ B)
ℝ == {f:ℕ+ ─→ ℤ| regular-seq(f)}
x = y == ∀n:ℕ+. (|(x n) - y n| ≤ 4)
x < y == ∃n:{ℕ+| (x n) + 4 < y n}
accelerate(k;f) == eval k2 = 2 * k in λn.eval m = k2 * n in (f m) ÷ k2
a + b == accelerate(2;reg-seq-list-add([a; b]))
rminus(x) == λn.(-(x n))
rmax(x;y) == λn.imax(x n;y n)
|x| == rmax(x;rminus(x))
a * b ==
eval a1 = a in
eval b1 = b in
accelerate((2 * imax(canonical-bound(a1);canonical-bound(b1))) + 1;reg-seq-mul(a1;b1))⋅
Latex:
k-regular-seq(f) == \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (f n)) - n * (f m)| \mleq{} ((2 * k) * (n + m)))
bdd-diff(f;g) == \mexists{}B:\mBbbN{}. \mforall{}n:\mBbbN{}\msupplus{}. (|(f n) - g n| \mleq{} B)
\mBbbR{} == \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| regular-seq(f)\}
x = y == \mforall{}n:\mBbbN{}\msupplus{}. (|(x n) - y n| \mleq{} 4)
x < y == \mexists{}n:\{\mBbbN{}\msupplus{}| (x n) + 4 < y n\}
accelerate(k;f) == eval k2 = 2 * k in \mlambda{}n.eval m = k2 * n in (f m) \mdiv{} k2
a + b == accelerate(2;reg-seq-list-add([a; b]))
rminus(x) == \mlambda{}n.(-(x n))
rmax(x;y) == \mlambda{}n.imax(x n;y n)
|x| == rmax(x;rminus(x))
a * b ==
eval a1 = a in
eval b1 = b in
accelerate((2 * imax(canonical-bound(a1);canonical-bound(b1))) + 1;reg-seq-mul(a1;b1))\mcdot{}
Date html generated:
2015_07_17-PM-06_21_49
Last ObjectModification:
2014_04_10-PM-02_22_41
Home
Index