Nuprl Definition : totally-bounded

totally-bounded(A) ==
  ∀e:ℝ((r0 < e)  (∃n:ℕ+. ∃a:ℕn ⟶ ℝ((∀i:ℕn. (a i ∈ A)) ∧ (∀x:ℝ((x ∈ A)  (∃i:ℕn. (|x i| < e)))))))



Definitions occuring in Statement :  rset-member: x ∈ A rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  int-to-real: r(n) nat_plus: + function: x:A ⟶ B[x] and: P ∧ Q all: x:A. B[x] real: implies:  Q rset-member: x ∈ A exists: x:A. B[x] int_seg: {i..j-} natural_number: $n rless: x < y rabs: |x| rsub: y apply: a
FDL editor aliases :  totally-bounded totally-bounded

Latex:
totally-bounded(A)  ==
    \mforall{}e:\mBbbR{}
        ((r0  <  e)
        {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}a:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.  ((\mforall{}i:\mBbbN{}n.  (a  i  \mmember{}  A))  \mwedge{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  A)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}n.  (|x  -  a  i|  <  e)))))))



Date html generated: 2016_05_18-AM-08_14_36
Last ObjectModification: 2015_09_23-AM-09_04_54

Theory : reals


Home Index