Nuprl Definition : arctangent
arctangent(x) ==  r0_∫-x (r1/r1 + t^2) dt
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
rdiv: (x/y), 
rnexp: x^k1, 
radd: a + b, 
int-to-real: r(n), 
natural_number: $n
Definitions occuring in definition : 
integral: a_∫-b f[x] dx, 
rdiv: (x/y), 
radd: a + b, 
int-to-real: r(n), 
rnexp: x^k1, 
natural_number: $n
FDL editor aliases : 
arctangent
Latex:
arctangent(x)  ==    r0\_\mint{}\msupminus{}x  (r1/r1  +  t\^{}2)  dt
Date html generated:
2018_05_22-PM-03_01_11
Last ObjectModification:
2017_10_21-PM-11_17_05
Theory : reals_2
Home
Index