Nuprl Definition : adjunction-monad

adjMonad(adj) ==
  mk-monad(functor-comp(F;G);snd(adj);x |→ arrow(G) (ob(F) (ob(G) (ob(F) x))) (ob(F) x) ((fst(adj)) (ob(F) x)))



Definitions occuring in Statement :  mk-monad: mk-monad(T;u;m) functor-comp: functor-comp(F;G) mk-nat-trans: |→ T[x] functor-arrow: arrow(F) functor-ob: ob(F) pi1: fst(t) pi2: snd(t) apply: a
Definitions occuring in definition :  functor-ob: ob(F) apply: a pi1: fst(t) functor-arrow: arrow(F) mk-nat-trans: |→ T[x] pi2: snd(t) functor-comp: functor-comp(F;G) mk-monad: mk-monad(T;u;m)
FDL editor aliases :  adjunction-monad

Latex:
adjMonad(adj)  ==
    mk-monad(functor-comp(F;G);snd(adj);x  |\mrightarrow{}  arrow(G)  (ob(F)  (ob(G)  (ob(F)  x)))  (ob(F)  x) 
                                                                                      ((fst(adj))  (ob(F)  x)))



Date html generated: 2017_01_19-PM-02_59_01
Last ObjectModification: 2017_01_17-AM-00_18_57

Theory : small!categories


Home Index