Nuprl Definition : cat-epic

epic(f) ==
  ∀[z:cat-ob(C)]. ∀[g,h:cat-arrow(C) z].
    h ∈ (cat-arrow(C) z) supposing (cat-comp(C) g) (cat-comp(C) h) ∈ (cat-arrow(C) z)



Definitions occuring in Statement :  cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions occuring in definition :  cat-arrow: cat-arrow(C) apply: a equal: t ∈ T cat-comp: cat-comp(C) uimplies: supposing a uall: [x:A]. B[x] cat-ob: cat-ob(C)
FDL editor aliases :  cat-epic

Latex:
epic(f)  ==
    \mforall{}[z:cat-ob(C)].  \mforall{}[g,h:cat-arrow(C)  y  z].
        g  =  h  supposing  (cat-comp(C)  x  y  z  f  g)  =  (cat-comp(C)  x  y  z  f  h)



Date html generated: 2017_01_09-AM-09_11_46
Last ObjectModification: 2017_01_08-PM-01_54_53

Theory : small!categories


Home Index