Nuprl Definition : counit-unit-adjunction
F -| G ==
  {p:nat-trans(B;B;functor-comp(G;F);1) × nat-trans(A;A;1;functor-comp(F;G))| 
   counit-unit-equations(A;B;F;G;fst(p);snd(p))} 
Definitions occuring in Statement : 
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta), 
id_functor: 1, 
functor-comp: functor-comp(F;G), 
nat-trans: nat-trans(C;D;F;G), 
pi1: fst(t), 
pi2: snd(t), 
set: {x:A| B[x]} , 
product: x:A × B[x]
Definitions occuring in definition : 
pi2: snd(t), 
pi1: fst(t), 
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta), 
functor-comp: functor-comp(F;G), 
id_functor: 1, 
nat-trans: nat-trans(C;D;F;G), 
product: x:A × B[x], 
set: {x:A| B[x]} 
FDL editor aliases : 
counit-unit-adjunction
Latex:
F  -|  G  ==
    \{p:nat-trans(B;B;functor-comp(G;F);1)  \mtimes{}  nat-trans(A;A;1;functor-comp(F;G))| 
      counit-unit-equations(A;B;F;G;fst(p);snd(p))\} 
Date html generated:
2017_01_19-PM-02_57_24
Last ObjectModification:
2017_01_16-PM-00_21_13
Theory : small!categories
Home
Index