Nuprl Definition : counit-unit-adjunction

-| ==
  {p:nat-trans(B;B;functor-comp(G;F);1) × nat-trans(A;A;1;functor-comp(F;G))| 
   counit-unit-equations(A;B;F;G;fst(p);snd(p))} 



Definitions occuring in Statement :  counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) id_functor: 1 functor-comp: functor-comp(F;G) nat-trans: nat-trans(C;D;F;G) pi1: fst(t) pi2: snd(t) set: {x:A| B[x]}  product: x:A × B[x]
Definitions occuring in definition :  pi2: snd(t) pi1: fst(t) counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) functor-comp: functor-comp(F;G) id_functor: 1 nat-trans: nat-trans(C;D;F;G) product: x:A × B[x] set: {x:A| B[x]} 
FDL editor aliases :  counit-unit-adjunction

Latex:
F  -|  G  ==
    \{p:nat-trans(B;B;functor-comp(G;F);1)  \mtimes{}  nat-trans(A;A;1;functor-comp(F;G))| 
      counit-unit-equations(A;B;F;G;fst(p);snd(p))\} 



Date html generated: 2017_01_19-PM-02_57_24
Last ObjectModification: 2017_01_16-PM-00_21_13

Theory : small!categories


Home Index