Nuprl Definition : groupoid-map

groupoid-map(G;H) ==
  {F:Functor(cat(G);cat(H))| 
   ∀x,y:cat-ob(cat(G)). ∀f:cat-arrow(cat(G)) y.
     ((F groupoid-inv(G;x;y;f)) groupoid-inv(H;F x;F y;F f) ∈ (cat-arrow(cat(H)) (F y) (F x)))} 



Definitions occuring in Statement :  groupoid-inv: groupoid-inv(G;x;y;x_y) groupoid-cat: cat(G) functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) all: x:A. B[x] set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  cat-functor: Functor(C1;C2) cat-ob: cat-ob(C) all: x:A. B[x] equal: t ∈ T cat-arrow: cat-arrow(C) groupoid-cat: cat(G) groupoid-inv: groupoid-inv(G;x;y;x_y) functor-ob: ob(F) apply: a functor-arrow: arrow(F)
FDL editor aliases :  groupoid-map

Latex:
groupoid-map(G;H)  ==
    \{F:Functor(cat(G);cat(H))| 
      \mforall{}x,y:cat-ob(cat(G)).  \mforall{}f:cat-arrow(cat(G))  x  y.
          ((F  y  x  groupoid-inv(G;x;y;f))  =  groupoid-inv(H;F  x;F  y;F  x  y  f))\} 



Date html generated: 2019_10_31-AM-07_24_48
Last ObjectModification: 2019_05_07-PM-06_01_20

Theory : small!categories


Home Index