Nuprl Definition : presheaf-elements
el(P) ==
  Cat(ob = A:cat-ob(op-cat(C)) × (ob(P) A);
      arrow(Aa,Bb) = let A,a = Aa 
                     in let B,b = Bb 
                        in {f:cat-arrow(op-cat(C)) B A| (arrow(P) B A f b) = a ∈ (ob(P) A)}
      id(Aa) = cat-id(op-cat(C)) (fst(Aa));
      comp(Aa,Bb,Dd,f,g) = cat-comp(op-cat(C)) (fst(Dd)) (fst(Bb)) (fst(Aa)) g f)
Definitions occuring in Statement : 
op-cat: op-cat(C)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
mk-cat: mk-cat, 
cat-comp: cat-comp(C)
, 
cat-id: cat-id(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
spread: spread def, 
product: x:A × B[x]
, 
equal: s = t ∈ T
Definitions occuring in definition : 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
cat-comp: cat-comp(C)
, 
apply: f a
, 
cat-id: cat-id(C)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
equal: s = t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
cat-ob: cat-ob(C)
, 
product: x:A × B[x]
, 
mk-cat: mk-cat
FDL editor aliases : 
presheaf-elements
Latex:
el(P)  ==
    Cat(ob  =  A:cat-ob(op-cat(C))  \mtimes{}  (ob(P)  A);
            arrow(Aa,Bb)  =  let  A,a  =  Aa 
                                          in  let  B,b  =  Bb 
                                                in  \{f:cat-arrow(op-cat(C))  B  A|  (arrow(P)  B  A  f  b)  =  a\}  ;
            id(Aa)  =  cat-id(op-cat(C))  (fst(Aa));
            comp(Aa,Bb,Dd,f,g)  =  cat-comp(op-cat(C))  (fst(Dd))  (fst(Bb))  (fst(Aa))  g  f)
Date html generated:
2017_10_05-AM-00_50_37
Last ObjectModification:
2017_10_03-AM-11_03_28
Theory : small!categories
Home
Index