Nuprl Definition : Sierpinski

Sierpinski ==  f,g:ℕ ⟶ 𝔹//(f = ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹))



Definitions occuring in Statement :  Sierpinski-bottom: quotient: x,y:A//B[x; y] nat: bool: 𝔹 iff: ⇐⇒ Q function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  quotient: x,y:A//B[x; y] iff: ⇐⇒ Q equal: t ∈ T function: x:A ⟶ B[x] nat: bool: 𝔹 Sierpinski-bottom:
FDL editor aliases :  Sierpinski

Latex:
Sierpinski  ==    f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}//(f  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  g  =  \mbot{})



Date html generated: 2019_10_31-AM-06_35_24
Last ObjectModification: 2015_09_23-AM-09_28_54

Theory : synthetic!topology


Home Index