Nuprl Definition : weak-overt

wOvert(X) ==  ∀[Y:Type]. ∃f:Open(X × Y) ⟶ Open(Y). ∀A:Open(X × Y). ∀y:Y.  (y ∈ ⇐⇒ ¬¬(∃x:X. <x, y> ∈ A))



Definitions occuring in Statement :  in-open: x ∈ A Open: Open(X) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type
Definitions occuring in definition :  uall: [x:A]. B[x] universe: Type function: x:A ⟶ B[x] Open: Open(X) product: x:A × B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a not: ¬A exists: x:A. B[x] in-open: x ∈ A pair: <a, b>
FDL editor aliases :  weak-overt

Latex:
wOvert(X)  ==
    \mforall{}[Y:Type].  \mexists{}f:Open(X  \mtimes{}  Y)  {}\mrightarrow{}  Open(Y).  \mforall{}A:Open(X  \mtimes{}  Y).  \mforall{}y:Y.    (y  \mmember{}  f  A  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}(\mexists{}x:X.  <x,  y>  \mmember{}  A))



Date html generated: 2019_10_31-AM-07_19_11
Last ObjectModification: 2015_09_23-AM-09_29_01

Theory : synthetic!topology


Home Index