Nuprl Definition : AF-spread-law

AF-spread-law(x,y.R[x; y]) ==  λn,s,x. ((↑isl(x))  (∀i:ℕn. ((↑isl(s i)) ∧ R[outl(s i); outl(x)]))))



Definitions occuring in Statement :  int_seg: {i..j-} outl: outl(x) assert: b isl: isl(x) all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] natural_number: $n
Definitions occuring in definition :  lambda: λx.A[x] implies:  Q all: x:A. B[x] int_seg: {i..j-} natural_number: $n and: P ∧ Q assert: b isl: isl(x) not: ¬A apply: a outl: outl(x)
FDL editor aliases :  AF-spread-law

Latex:
AF-spread-law(x,y.R[x;  y])  ==
    \mlambda{}n,s,x.  ((\muparrow{}isl(x))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n.  ((\muparrow{}isl(s  i))  \mwedge{}  (\mneg{}R[outl(s  i);  outl(x)]))))



Date html generated: 2016_05_13-PM-03_50_55
Last ObjectModification: 2015_09_22-PM-05_45_22

Theory : bar-induction


Home Index