Nuprl Definition : cWO-rel

cWO-rel(R) ==  λn,s,x. ((0 < n ∧ (↑isl(x)))  ((↑isl(s (n 1))) ∧ (R outl(s (n 1)) outl(x))))



Definitions occuring in Statement :  outl: outl(x) assert: b isl: isl(x) less_than: a < b implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] subtract: m natural_number: $n
Definitions occuring in definition :  lambda: λx.A[x] implies:  Q less_than: a < b and: P ∧ Q assert: b isl: isl(x) apply: a subtract: m natural_number: $n outl: outl(x)
FDL editor aliases :  cWO-rel

Latex:
cWO-rel(R)  ==    \mlambda{}n,s,x.  ((0  <  n  \mwedge{}  (\muparrow{}isl(x)))  {}\mRightarrow{}  ((\muparrow{}isl(s  (n  -  1)))  \mwedge{}  (R  outl(s  (n  -  1))  outl(x))))



Date html generated: 2016_05_13-PM-03_52_07
Last ObjectModification: 2015_09_22-PM-05_45_27

Theory : bar-induction


Home Index