Nuprl Definition : cWO

cWO(T;x,y.R[x; y]) ==  ∀f:ℕ ⟶ T. (↓∃n:ℕR[f n; (n 1)]))



Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions occuring in definition :  all: x:A. B[x] function: x:A ⟶ B[x] squash: T exists: x:A. B[x] nat: not: ¬A apply: a add: m natural_number: $n
FDL editor aliases :  cWO

Latex:
cWO(T;x,y.R[x;  y])  ==    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (\mneg{}R[f  n;  f  (n  +  1)]))



Date html generated: 2016_05_13-PM-03_51_47
Last ObjectModification: 2015_09_22-PM-05_45_25

Theory : bar-induction


Home Index