Nuprl Definition : consistent-seq

R-consistent-seq(n) ==  {s:ℕn ⟶ T| ∀x:ℕn. (R (s x))} 



Definitions occuring in Statement :  int_seg: {i..j-} all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] all: x:A. B[x] int_seg: {i..j-} natural_number: $n apply: a
FDL editor aliases :  consistent-seq

Latex:
R-consistent-seq(n)  ==    \{s:\mBbbN{}n  {}\mrightarrow{}  T|  \mforall{}x:\mBbbN{}n.  (R  x  s  (s  x))\} 



Date html generated: 2016_05_13-PM-03_48_44
Last ObjectModification: 2015_09_22-PM-05_45_18

Theory : bar-induction


Home Index