Nuprl Definition : coWmem
coWmem(a.B[a];z;w) ==  ∃b:coW-dom(a.B[a];w). coW-equiv(a.B[a];z;coW-item(w;b))
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w'), 
coW-item: coW-item(w;b), 
coW-dom: coW-dom(a.B[a];w), 
exists: ∃x:A. B[x]
Definitions occuring in definition : 
exists: ∃x:A. B[x], 
coW-dom: coW-dom(a.B[a];w), 
coW-equiv: coW-equiv(a.B[a];w;w'), 
coW-item: coW-item(w;b)
FDL editor aliases : 
coWmem
Latex:
coWmem(a.B[a];z;w)  ==    \mexists{}b:coW-dom(a.B[a];w).  coW-equiv(a.B[a];z;coW-item(w;b))
 Date html generated: 
2019_06_20-PM-01_10_56
 Last ObjectModification: 
2019_01_02-PM-01_35_08
Theory : co-recursion-2
Home
Index