Nuprl Definition : maximal-copath

maximal-copath(a.B[a];w) ==
  {p:ℕ ⟶ copath(a.B[a];w)| 
   ∀n:ℕ((∀i:ℕn. (copath-length(p i) i ∈ ℤ))  (∀i:ℕ1. copathAgree(a.B[a];w;p i;p (i 1))))} 



Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) copath: copath(a.B[a];w) int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] copath: copath(a.B[a];w) nat: implies:  Q equal: t ∈ T int: copath-length: copath-length(p) all: x:A. B[x] int_seg: {i..j-} subtract: m copathAgree: copathAgree(a.B[a];w;x;y) apply: a add: m natural_number: $n
FDL editor aliases :  maximal-copath

Latex:
maximal-copath(a.B[a];w)  ==
    \{p:\mBbbN{}  {}\mrightarrow{}  copath(a.B[a];w)| 
      \mforall{}n:\mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  (copath-length(p  i)  =  i))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n  -  1.  copathAgree(a.B[a];w;p  i;p  (i  +  1))))\} 



Date html generated: 2019_06_20-PM-01_11_45
Last ObjectModification: 2019_01_02-PM-01_35_25

Theory : co-recursion-2


Home Index