Nuprl Definition : sg-reachable

sg-reachable(g;x;y) ==
  ∃f:sequence(Pos(g))
   (0 < ||f||
   ∧ (f[0] x ∈ Pos(g))
   ∧ (f[||f|| 1] y ∈ Pos(g))
   ∧ (∀i:ℕ((2 i) 1 < ||f||  (↓Legal1(f[2 i];f[(2 i) 1]))))
   ∧ (∀i:ℕ+(2 i < ||f||  (↓Legal2(f[(2 i) 1];f[2 i])))))



Definitions occuring in Statement :  sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-pos: Pos(g) seq-item: s[i] seq-len: ||s|| sequence: sequence(T) nat_plus: + nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q multiply: m subtract: m add: m natural_number: $n equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] sequence: sequence(T) equal: t ∈ T sg-pos: Pos(g) and: P ∧ Q nat: sg-legal1: Legal1(x;y) add: m all: x:A. B[x] nat_plus: + implies:  Q less_than: a < b seq-len: ||s|| squash: T sg-legal2: Legal2(x;y) subtract: m seq-item: s[i] multiply: m natural_number: $n
FDL editor aliases :  sg-reachable

Latex:
sg-reachable(g;x;y)  ==
    \mexists{}f:sequence(Pos(g))
      (0  <  ||f||
      \mwedge{}  (f[0]  =  x)
      \mwedge{}  (f[||f||  -  1]  =  y)
      \mwedge{}  (\mforall{}i:\mBbbN{}.  ((2  *  i)  +  1  <  ||f||  {}\mRightarrow{}  (\mdownarrow{}Legal1(f[2  *  i];f[(2  *  i)  +  1]))))
      \mwedge{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (2  *  i  <  ||f||  {}\mRightarrow{}  (\mdownarrow{}Legal2(f[(2  *  i)  -  1];f[2  *  i])))))



Date html generated: 2019_06_20-PM-00_52_50
Last ObjectModification: 2019_01_02-PM-01_32_11

Theory : co-recursion-2


Home Index