Nuprl Definition : pcw-consistent-paths

pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) ==
  ∀n:ℕ((¬pcw-final-step(f n))  ((f n) (g n) ∈ pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])))



Definitions occuring in Statement :  pcw-final-step: pcw-final-step(s) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) nat: all: x:A. B[x] not: ¬A implies:  Q apply: a equal: t ∈ T
Definitions occuring in definition :  all: x:A. B[x] nat: implies:  Q not: ¬A pcw-final-step: pcw-final-step(s) equal: t ∈ T pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) apply: a
FDL editor aliases :  pcw-consistent-paths

Latex:
pcw-consistent-paths(P;p.A[p];p,a.B[p;  a];p,a,b.C[p;  a;  b];f;g)  ==
    \mforall{}n:\mBbbN{}.  ((\mneg{}pcw-final-step(f  n))  {}\mRightarrow{}  ((f  n)  =  (g  n)))



Date html generated: 2016_05_14-AM-06_12_47
Last ObjectModification: 2015_09_22-PM-05_47_04

Theory : co-recursion


Home Index