Nuprl Definition : stream-lex

stream-lex(T;R) ==  ∨lex.λs1,s2. ((s-hd(s1) s-hd(s2)) ∧ ((s-hd(s1) s-hd(s2) ∈ T)  (s-tl(s1) lex s-tl(s2))))



Definitions occuring in Statement :  s-tl: s-tl(s) s-hd: s-hd(s) bigrel: R.F[R] infix_ap: y implies:  Q and: P ∧ Q lambda: λx.A[x] equal: t ∈ T
Definitions occuring in definition :  bigrel: R.F[R] lambda: λx.A[x] and: P ∧ Q implies:  Q equal: t ∈ T s-hd: s-hd(s) infix_ap: y s-tl: s-tl(s)
FDL editor aliases :  stream-lex

Latex:
stream-lex(T;R)  ==
    \mvee{}lex.\mlambda{}s1,s2.  ((s-hd(s1)  R  s-hd(s2))  \mwedge{}  ((s-hd(s1)  =  s-hd(s2))  {}\mRightarrow{}  (s-tl(s1)  lex  s-tl(s2))))



Date html generated: 2016_05_14-AM-06_23_55
Last ObjectModification: 2015_09_22-PM-05_48_05

Theory : co-recursion


Home Index