Nuprl Definition : fun2tree
fun2tree(M;p)
==r let n,br = p
in case M n br
of inl(x) =>
Wsup(inl x;λi.i)
| inr(_) =>
Wsup(inr n ;λi.fun2tree(M;<n + 1, λx.if (x =z n) then i else br x fi >))
fun2tree(M;p) ==
fix((λfun2tree,p. let n,br = p
in eval t = M n br in
if t = Ax then Wsup(inr n ;λi.(fun2tree <n + 1, λx.if (x =z n) then i else br x fi >))
otherwise Wsup(inl t;λi.i)))
p
Definitions occuring in Statement :
Wsup: Wsup(a;b)
,
callbyvalue: callbyvalue,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
isaxiom: if z = Ax then a otherwise b
,
apply: f a
,
fix: fix(F)
,
lambda: λx.A[x]
,
spread: spread def,
pair: <a, b>
,
inr: inr x
,
inl: inl x
,
add: n + m
,
natural_number: $n
Definitions occuring in definition :
fix: fix(F)
,
spread: spread def,
callbyvalue: callbyvalue,
isaxiom: if z = Ax then a otherwise b
,
inr: inr x
,
pair: <a, b>
,
add: n + m
,
natural_number: $n
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
apply: f a
,
Wsup: Wsup(a;b)
,
inl: inl x
,
lambda: λx.A[x]
FDL editor aliases :
fun2tree
Latex:
fun2tree(M;p)
==r let n,br = p
in case M n br
of inl(x) =>
Wsup(inl x;\mlambda{}i.i)
| inr($_{}$) =>
Wsup(inr n ;\mlambda{}i.fun2tree(M;<n + 1, \mlambda{}x.if (x =\msubz{} n) then i else br x fi >))
Latex:
fun2tree(M;p) ==
fix((\mlambda{}fun2tree,p. let n,br = p
in eval t = M n br in
if t = Ax then Wsup(inr n ;\mlambda{}i.(fun2tree
<n + 1, \mlambda{}x.if (x =\msubz{} n) then i else br x fi >))
otherwise Wsup(inl t;\mlambda{}i.i)))
p
Date html generated:
2019_06_20-PM-03_08_34
Last ObjectModification:
2018_08_14-PM-02_06_56
Theory : continuity
Home
Index