Nuprl Definition : is-absolutely-free

is-absolutely-free{i:l}(f) ==  ∀P:(ℕ ⟶ ℕ) ⟶ ℙ((P f)  ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕk ⟶ ℕ))  (P g))))



Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  prop: quotient: x,y:A//B[x; y] exists: x:A. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T function: x:A ⟶ B[x] int_seg: {i..j-} natural_number: $n nat: apply: a true: True
FDL editor aliases :  is-absolutely-free

Latex:
is-absolutely-free\{i:l\}(f)  ==    \mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  ((P  f)  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g))))



Date html generated: 2017_09_29-PM-06_09_13
Last ObjectModification: 2017_04_22-PM-05_23_35

Theory : continuity


Home Index