Nuprl Definition : strong-continuity2

strong-continuity2(T;F) ==
  ∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
   ∀f:ℕ ⟶ T. ((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f)))



Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions occuring in definition :  apply: a inl: inl x unit: Unit nat: union: left right equal: t ∈ T isl: isl(x) assert: b uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int_seg: {i..j-}
FDL editor aliases :  strong-continuity2

Latex:
strong-continuity2(T;F)  ==
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))



Date html generated: 2016_12_12-AM-09_22_24
Last ObjectModification: 2016_11_22-AM-11_36_59

Theory : continuity


Home Index