Nuprl Definition : strong-continuity3

strong-continuity3(T;F) ==
  ∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
   ∀f:ℕ ⟶ T. ∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))))



Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions occuring in definition :  nat: equal: t ∈ T apply: a isl: isl(x) assert: b implies:  Q all: x:A. B[x] inl: inl x unit: Unit union: left right and: P ∧ Q exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int_seg: {i..j-}
FDL editor aliases :  strong-continuity3

Latex:
strong-continuity3(T;F)  ==
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))



Date html generated: 2016_12_12-AM-09_22_37
Last ObjectModification: 2016_11_22-AM-11_41_11

Theory : continuity


Home Index