Nuprl Definition : strong-continuity4
strong-continuity4(T;F) ==
∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)
∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))
Definitions occuring in Statement :
int_seg: {i..j-}
,
nat: ℕ
,
assert: ↑b
,
isl: isl(x)
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
unit: Unit
,
apply: f a
,
function: x:A ⟶ B[x]
,
inl: inl x
,
union: left + right
,
natural_number: $n
,
equal: s = t ∈ T
Definitions occuring in definition :
apply: f a
,
inl: inl x
,
unit: Unit
,
nat: ℕ
,
union: left + right
,
equal: s = t ∈ T
,
isl: isl(x)
,
assert: ↑b
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int_seg: {i..j-}
FDL editor aliases :
strong-continuity4
Latex:
strong-continuity4(T;F) ==
\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}n?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl (F f))))))
Date html generated:
2017_09_29-PM-06_05_20
Last ObjectModification:
2017_09_03-PM-10_12_11
Theory : continuity
Home
Index