Nuprl Lemma : weak-continuity-nat-nat

F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕn ⟶ ℕ))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Lemmas referenced :  strong-continuity2-implies-weak
Rules used in proof :  hypothesis extract_by_obid introduction cut

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2017_09_29-PM-06_05_59
Last ObjectModification: 2017_08_30-PM-00_01_53

Theory : continuity


Home Index