Nuprl Definition : weak-continuity-skolem

weak-continuity-skolem(T;F) ==  ∃M:(ℕ ⟶ T) ⟶ ℕ. ∀f,g:ℕ ⟶ T.  ((f g ∈ (ℕf ⟶ T))  ((F f) (F g) ∈ ℕ))



Definitions occuring in Statement :  int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  apply: a nat: equal: t ∈ T natural_number: $n int_seg: {i..j-} function: x:A ⟶ B[x] implies:  Q all: x:A. B[x] exists: x:A. B[x]
FDL editor aliases :  weak-continuity-skolem

Latex:
weak-continuity-skolem(T;F)  ==    \mexists{}M:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  T.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))



Date html generated: 2016_12_12-AM-09_22_54
Last ObjectModification: 2016_11_22-PM-00_01_54

Theory : continuity


Home Index