Nuprl Definition : AC_1_0

AC_1_0{i:l}() ==  ∀R:(ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ((∀f:ℕ ⟶ ℕ(↓∃n:ℕ(R n)))  (↓∃F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ(R (F f))))



Definitions occuring in Statement :  nat: prop: all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q apply: a function: x:A ⟶ B[x]
Definitions occuring in definition :  prop: implies:  Q squash: T exists: x:A. B[x] all: x:A. B[x] function: x:A ⟶ B[x] nat: apply: a
FDL editor aliases :  AC_1_0

Latex:
AC\_1\_0\{i:l\}()  ==
    \mforall{}R:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
        ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (R  f  n)))  {}\mRightarrow{}  (\mdownarrow{}\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (R  f  (F  f))))



Date html generated: 2016_05_14-PM-04_15_36
Last ObjectModification: 2015_09_22-PM-06_02_31

Theory : fan-theorem


Home Index