Nuprl Definition : alt-wkl!

WKL! is the weak Konig lemma with uniqueness. 
"weak" because is about decidable (aka "detachable") trees.
We use of type ⌜n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹⌝ to represent the "set" of nodes.
Tree(A) says that is "downward closed".
Unbounded(A) says that has nodes of every height
 (but we don't need the constructive witness for this, so the
  assumptions ⌜Tree(A) ∧ Unbounded(A)⌝ can be put into set-type).

The "uniquness" assumption is AtMostOnePath(A), and the conclusion
is that there is path.

The theorem Error :fan-wkl! says that for finite type T, Fan(T)  WKL!(T).
Since we can prove Fan(T), that means that WKL!(T) is true for finite types T.


WKL!(T) ==  ∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹Tree(A) ∧ Unbounded(A)} (AtMostOnePath(A)  (∃f:ℕ ⟶ [IsPath(A;f)]))



Definitions occuring in Statement :  alt-one-path: AtMostOnePath(A) altpath: IsPath(A;f) alttree: Tree(A) altunbounded: Unbounded(A) int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  altpath: IsPath(A;f) nat: function: x:A ⟶ B[x] sq_exists: x:A [B[x]] alt-one-path: AtMostOnePath(A) implies:  Q altunbounded: Unbounded(A) alttree: Tree(A) and: P ∧ Q bool: 𝔹 natural_number: $n int_seg: {i..j-} set: {x:A| B[x]}  all: x:A. B[x]
FDL editor aliases :  alt-wkl!

Latex:
WKL!(T)  ==
    \mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\} 
        (AtMostOnePath(A)  {}\mRightarrow{}  (\mexists{}f:\mBbbN{}  {}\mrightarrow{}  T  [IsPath(A;f)]))



Date html generated: 2019_06_20-PM-02_46_29
Last ObjectModification: 2019_06_06-PM-10_09_17

Theory : fan-theorem


Home Index