Nuprl Definition : fset-closure

(c fs closure of s) ==  s ⊆ c ∧ (c closed under fs) ∧ (∀c':fset(T). (s ⊆ c'  (c' closed under fs)  c ⊆ c'))



Definitions occuring in Statement :  fset-closed: (s closed under fs) f-subset: xs ⊆ ys fset: fset(T) all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  and: P ∧ Q all: x:A. B[x] fset: fset(T) implies:  Q fset-closed: (s closed under fs) f-subset: xs ⊆ ys
FDL editor aliases :  fset-closure

Latex:
(c  =  fs  closure  of  s)  ==
    s  \msubseteq{}  c  \mwedge{}  (c  closed  under  fs)  \mwedge{}  (\mforall{}c':fset(T).  (s  \msubseteq{}  c'  {}\mRightarrow{}  (c'  closed  under  fs)  {}\mRightarrow{}  c  \msubseteq{}  c'))



Date html generated: 2016_05_14-PM-03_44_50
Last ObjectModification: 2015_10_06-PM-01_34_38

Theory : finite!sets


Home Index