Nuprl Definition : mul-polynom
mul-polynom(n;p;q)
==r eval pp = p in
eval qq = q in
if poly-zero(n;pp) then pp
if poly-zero(n;qq) then qq
else eval zero = polyconst(n;0) in
if n=0
then pp * qq
else eval m = n - 1 in
eager-accum(z,a.add-polynom(n;tt;if null(z) then [] else z @ [polyconst(m;0)] fi ;if poly-zero(m;a)
then []
else map(λx.mul-polynom(m;a;x);qq)
fi );zero;pp)
fi
mul-polynom(n;p;q) ==
fix((λmul-polynom,n,p,q. eval pp = p in
eval qq = q in
if poly-zero(n;pp) then pp
if poly-zero(n;qq) then qq
else eval zero = polyconst(n;0) in
if n=0
then pp * qq
else eval m = n - 1 in
eager-accum(z,a.add-polynom(n;tt;if null(z)
then []
else z @ [polyconst(m;0)]
fi ;if poly-zero(m;a)
then []
else map(λx.(mul-polynom m a x);qq)
fi );zero;pp)
fi ))
n
p
q
Definitions occuring in Statement :
polyconst: polyconst(n;k)
,
add-polynom: add-polynom(n;rmz;p;q)
,
poly-zero: poly-zero(n;p)
,
eager-accum: eager-accum(x,a.f[x; a];y;l)
,
null: null(as)
,
map: map(f;as)
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
callbyvalue: callbyvalue,
ifthenelse: if b then t else f fi
,
btrue: tt
,
int_eq: if a=b then c else d
,
apply: f a
,
fix: fix(F)
,
lambda: λx.A[x]
,
multiply: n * m
,
subtract: n - m
,
natural_number: $n
Definitions occuring in definition :
fix: fix(F)
,
int_eq: if a=b then c else d
,
multiply: n * m
,
callbyvalue: callbyvalue,
subtract: n - m
,
eager-accum: eager-accum(x,a.f[x; a];y;l)
,
add-polynom: add-polynom(n;rmz;p;q)
,
btrue: tt
,
null: null(as)
,
append: as @ bs
,
cons: [a / b]
,
polyconst: polyconst(n;k)
,
natural_number: $n
,
ifthenelse: if b then t else f fi
,
poly-zero: poly-zero(n;p)
,
nil: []
,
map: map(f;as)
,
lambda: λx.A[x]
,
apply: f a
FDL editor aliases :
mul-polynom
Latex:
mul-polynom(n;p;q)
==r eval pp = p in
eval qq = q in
if poly-zero(n;pp) then pp
if poly-zero(n;qq) then qq
else eval zero = polyconst(n;0) in
if n=0
then pp * qq
else eval m = n - 1 in
eager-accum(z,a.add-polynom(n;tt;if null(z)
then []
else z @ [polyconst(m;0)]
fi ;if poly-zero(m;a) then [] else map(\mlambda{}x.mul-polynom(m;a;x);qq) fi );zero;pp)
fi
Latex:
mul-polynom(n;p;q) ==
fix((\mlambda{}mul-polynom,n,p,q. eval pp = p in
eval qq = q in
if poly-zero(n;pp) then pp
if poly-zero(n;qq) then qq
else eval zero = polyconst(n;0) in
if n=0
then pp * qq
else eval m = n - 1 in
eager-accum(z,a.add-polynom(n;tt;if null(z)
then []
else z @ [polyconst(m;0)]
fi ;if poly-zero(m;a)
then []
else map(\mlambda{}x.(mul-polynom m a x);qq)
fi );zero;pp)
fi ))
n
p
q
Date html generated:
2017_09_29-PM-06_00_46
Last ObjectModification:
2017_04_26-PM-02_05_04
Theory : integer!polynomials
Home
Index