Nuprl Definition : finite-type
finite-type(T) ==  ∃n:ℕ. ∃f:ℕn ⟶ T. Surj(ℕn;T;f)
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions occuring in definition : 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
natural_number: $n
FDL editor aliases : 
finite-type
Latex:
finite-type(T)  ==    \mexists{}n:\mBbbN{}.  \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  T.  Surj(\mBbbN{}n;T;f)
Date html generated:
2016_05_14-PM-01_50_22
Last ObjectModification:
2015_09_22-PM-05_54_53
Theory : list_1
Home
Index