Nuprl Definition : reducible

reducible(a) ==  ∃b,c:ℤ-o((¬(b 1)) ∧ (c 1)) ∧ (a (b c) ∈ ℤ))



Definitions occuring in Statement :  assoced: b int_nzero: -o exists: x:A. B[x] not: ¬A and: P ∧ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] int_nzero: -o and: P ∧ Q not: ¬A assoced: b natural_number: $n equal: t ∈ T int: multiply: m
FDL editor aliases :  reducible

Latex:
reducible(a)  ==    \mexists{}b,c:\mBbbZ{}\msupminus{}\msupzero{}.  ((\mneg{}(b  \msim{}  1))  \mwedge{}  (\mneg{}(c  \msim{}  1))  \mwedge{}  (a  =  (b  *  c)))



Date html generated: 2016_05_14-PM-04_19_41
Last ObjectModification: 2015_09_22-PM-06_02_37

Theory : num_thy_1


Home Index