Nuprl Definition : negate-poly-constraint
negate-poly-constraint(X) ==
let eqs,ineqs = X
in accumulate (with value pcs and list item e):
[<[], [minus-poly(add-ipoly(e;const-poly(1)))]>; [<[], [add-ipoly(e;const-poly(-1))]> / pcs]]
over list:
eqs
with starting value:
map(λineq.<[], [minus-poly(add-ipoly(ineq;const-poly(1)))]>;ineqs))
Definitions occuring in Statement :
const-poly: const-poly(n)
,
minus-poly: minus-poly(p)
,
add-ipoly: add-ipoly(p;q)
,
map: map(f;as)
,
list_accum: list_accum,
cons: [a / b]
,
nil: []
,
lambda: λx.A[x]
,
spread: spread def,
pair: <a, b>
,
minus: -n
,
natural_number: $n
Definitions occuring in definition :
spread: spread def,
list_accum: list_accum,
minus: -n
,
map: map(f;as)
,
lambda: λx.A[x]
,
pair: <a, b>
,
cons: [a / b]
,
minus-poly: minus-poly(p)
,
add-ipoly: add-ipoly(p;q)
,
const-poly: const-poly(n)
,
natural_number: $n
,
nil: []
FDL editor aliases :
negate-poly-constraint
Latex:
negate-poly-constraint(X) ==
let eqs,ineqs = X
in accumulate (with value pcs and list item e):
[<[], [minus-poly(add-ipoly(e;const-poly(1)))]> [<[], [add-ipoly(e;const-poly(-1))]> / pcs]]
over list:
eqs
with starting value:
map(\mlambda{}ineq.<[], [minus-poly(add-ipoly(ineq;const-poly(1)))]>ineqs))
Date html generated:
2016_05_14-AM-07_08_46
Last ObjectModification:
2015_09_22-PM-05_52_58
Theory : omega
Home
Index