Nuprl Definition : satisfies-poly-constraints

satisfies-poly-constraints(f;X) ==
  let eqs,ineqs 
  in (∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ) ∧ (∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p)))



Definitions occuring in Statement :  ipolynomial-term: ipolynomial-term(p) int_term_value: int_term_value(f;t) l_all: (∀x∈L.P[x]) le: A ≤ B and: P ∧ Q spread: spread def natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  spread: spread def and: P ∧ Q equal: t ∈ T int: l_all: (∀x∈L.P[x]) le: A ≤ B natural_number: $n int_term_value: int_term_value(f;t) ipolynomial-term: ipolynomial-term(p)
FDL editor aliases :  satisfies-poly-constraints

Latex:
satisfies-poly-constraints(f;X)  ==
    let  eqs,ineqs  =  X 
    in  (\mforall{}p\mmember{}eqs.int\_term\_value(f;ipolynomial-term(p))  =  0)
          \mwedge{}  (\mforall{}p\mmember{}ineqs.0  \mleq{}  int\_term\_value(f;ipolynomial-term(p)))



Date html generated: 2016_05_14-AM-07_07_53
Last ObjectModification: 2015_09_22-PM-05_52_51

Theory : omega


Home Index